—— 要投稿,上万维,轻松学术交流

严正声明

本站非期刊官网,非中介代理,
不向作者收取任何费用!
举报微信:13140028228 冯老师

态度公正、信息求实、投稿自助、使用免费
您的位置:万维学术 > SCI期刊 > 数学 > 数学
Combinatorica《组合学》
双月刊 - 德国
  • Combinatorica《组合学》
  • SCIE外文期刊
  • 期发文量11
  • 国人占比6.25%
  • 知网外文库,维普目次
  • 投稿方式--官网投稿
  • 期刊属性

  • 中科分区:2区
    OA期刊:混合
  • 综述期刊:
    TOP期刊:
  • 期均国文:1
    环比增速:0.00%
  • 期刊信息

  • 研究方向:数学-MATHEMATICS数学
  • 国际刊号:ISSN 0209-9683;EISSN 1439-6912
  • 期刊语言:英语
    出版地区:德国
  • 投稿网址:https://ef.msp.org/submit/combinatorica
  • 电子邮箱:
  • 期刊官网:https://www.springer.com/journal/493
  • 作者指南:
  • 出版商网址:http://www.springer.com
  • 出版地址:TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121
  • 期刊简介:Combinatorica《组合学》(双月刊). COMBINATORICA is an international journal of the J. Bolyai Mathematical Society (Fõ utca 68., 1027 Budapest, Hungary), published jointly by the J. Bolyai Mathematical Society and Springer. COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles.

  • 万维提示


  • 1、投稿方式:在线投稿。

    2、期刊网址:https://www.springer.com/journal/493

    3、投稿网址:https://ef.msp.org/submit/combinatorica

    4、官网邮箱:imbarany@gmail.com(主编)

    (更多相关咨询邮箱请查看期刊官网信息)

    5、期刊刊期:双月刊,逢双月出版。

    2022120日星期四

                                  

     

    投稿须知【官网信息】

     

    COMBINATORICA

    Bolyai Society – Springer-Verlag

    Instructions to Authors

    1. Submission. Manuscripts should be submitted via the editorial system EditFlow. Please use the following link: https://ef.msp.org/submit/combinatorica

    2. Length. The length of the paper should not exceed 30 pages (in 11-point L A T E X format on US letter-size paper with 1-inch margins). Authors of longer papers are advised to submit a 30-page version to COMBINATORICA with a link to a full version on arXiv.

    3. Notes. Short notes are welcome and processed in an expedited fashion.

    4. Form of Manuscript. The manuscript should contain a brief abstract. In a paper divided into sections, it is desirable to number theorems, lemmas, definitions, corollaries, examples, etc. consecutively using double Arabic numerals. (E.g., Section 3 may start with Definition 3.1 followed by Remark 3.2 and Theorem 3.3).

    5. Style. Clarity of the presentation is paramount. The results should be made accessible to the non-specialist reader. Authors should give clear motivation, background, and exact references.

    6. Final version. If the paper is accepted, the following should be submitted.

    The final version of the paper in TeX/LaTeX format. It is best to avoid using complicated macros or non-standard packages and fonts as they tend to be in conflict with the journal format. Furthermore, it significantly simplifies the typesetting process if unused packages and definitions are deleted by the author. In general, a plain “vanilla” version is the least prone to errors when adapting it to the journal format.

    Each figure in a separate file (in a vector graphic format that can handle embedded fonts such as EPS or vector PDF). Note that while the online version is published in color, the print version is converted to grayscale. Ensure that the figure can still be understood even when it is printed in grayscale. For example, avoid referring to colors in the text.

    Affiliation and e-mail address for each author.

    Abbreviated title (at most 35 characters), to be used as the running head.

    Mathematics Subject Classification codes (primary and secondary).

    7. Reprints. 50 Reprints are provided free of charge upon request. Additional reprints may be ordered.





欢迎点评!让信息更透明,使投稿更轻松!
  • 审稿时间:
    是否录用:
  • 见刊周期:
    查重要求:
  • 有无课题:
    有无回复:
  • 我的学历:
    我的职称:
  • 审稿费用:
    版面费用:
  • 稿       费:
    稿件字数:
  • 投稿难度:
  • 该刊可发:
  • 投稿主题:
匿名: 验证码: 点击切换验证码
    评分:0

    验证码: 点击切换验证码